On relative commuting probability of finite rings

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relative n-th non-commuting graphs of finite groups

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...

متن کامل

On the Commuting Probability in Finite Groups

Introduction: When G is a finite group, we may endow G×G with the structure of a probability space by assigning the uniform distribution. As was pointed out by W.H. Gustafson [10], the probability that a randomly chosen pair of elements of G commute is then k(G) |G| , where k(G) is the number of conjugacy classes of G. We denote this probability by cp(G). It was also noted in [10] that cp(G) ≤ ...

متن کامل

Commuting probability for subrings and quotient rings

We prove that the commuting probability of a finite ring is no larger than the commuting probabilities of its subrings and quotients, and characterize when equality occurs in such a comparison.

متن کامل

Commuting $pi$-regular rings

R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.

متن کامل

relative n-th non-commuting graphs of finite groups

‎suppose $n$ is a fixed positive integer‎. ‎we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$‎, ‎associated to the non-abelian subgroup $h$ of group $g$‎. ‎the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$‎. ‎moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Miskolc Mathematical Notes

سال: 2019

ISSN: 1787-2405,1787-2413

DOI: 10.18514/mmn.2019.2274