On relative commuting probability of finite rings
نویسندگان
چکیده
منابع مشابه
Relative n-th non-commuting graphs of finite groups
Suppose $n$ is a fixed positive integer. We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$, associated to the non-abelian subgroup $H$ of group $G$. The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$. Moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x...
متن کاملOn the Commuting Probability in Finite Groups
Introduction: When G is a finite group, we may endow G×G with the structure of a probability space by assigning the uniform distribution. As was pointed out by W.H. Gustafson [10], the probability that a randomly chosen pair of elements of G commute is then k(G) |G| , where k(G) is the number of conjugacy classes of G. We denote this probability by cp(G). It was also noted in [10] that cp(G) ≤ ...
متن کاملCommuting probability for subrings and quotient rings
We prove that the commuting probability of a finite ring is no larger than the commuting probabilities of its subrings and quotients, and characterize when equality occurs in such a comparison.
متن کاملCommuting $pi$-regular rings
R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.
متن کاملrelative n-th non-commuting graphs of finite groups
suppose $n$ is a fixed positive integer. we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$, associated to the non-abelian subgroup $h$ of group $g$. the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g : [x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$. moreover, ${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Miskolc Mathematical Notes
سال: 2019
ISSN: 1787-2405,1787-2413
DOI: 10.18514/mmn.2019.2274